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a b s t r a c t

Graphics processing units are capable of impressive computing performance up to
518 Gflops peak performance. Various groups have been using these processors for general
purpose computing; most efforts have focussed on demonstrating relatively basic calcula-
tions, e.g. numerical linear algebra, or physical simulations for visualization purposes with
limited accuracy. This paper describes the simulation of a hypersonic vehicle configuration
with detailed geometry and accurate boundary conditions using the compressible Euler
equations. To the authors’ knowledge, this is the most sophisticated calculation of this kind
in terms of complexity of the geometry, the physical model, the numerical methods
employed, and the accuracy of the solution. The Navier–Stokes Stanford University Solver
(NSSUS) was used for this purpose. NSSUS is a multi-block structured code with a provably
stable and accurate numerical discretization which uses a vertex-based finite-difference
method. A multi-grid scheme is used to accelerate the solution of the system. Based on a
comparison of the Intel Core 2 Duo and NVIDIA 8800GTX, speed-ups of over 40� were
demonstrated for simple test geometries and 20� for complex geometries.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

In the last 5 years a new generation of processors, often called streaming processors, has become available for compute
intensive applications. This new generation includes processors on graphics cards (GPU), ClearSpeed, Cell (IBM–Toshiba–
Sony), and Merrimac (Stanford University). Special purpose processors like the GRAPE family have been available for a longer
time. All these processors excel at arithmetic operations and boast performance in the range of 200–350 Gflops. As has been
realized for some time now, increase in performance of processors becomes increasingly difficult to realize by simply shrink-
ing the size of transistors and increasing the clock frequency. Furthermore, techniques that increase single core performance
such as out-of-order execution, pipelining and branch prediction use large amounts of die space and consume significant
amounts of power. Still, Moore’s law continues to apply: the number of transistors that can be placed on a chip is still
increasing exponentially. Currently there are two different techniques to take advantage of all these transistors: CPUs put
more traditional cores on a die while GPUs have numerous smaller but less capable cores coupled with a very fast memory
system. The NVIDIA 8800GTX for example has 128 scalar processors at 1.35 GHz capable of processing concurrently thou-
sands of threads with a bandwidth to memory of 80 Gbytes/s.

In this paper, we focus on the use of GPUs for scientific codes. Several languages or programming environments have been
developed to utilize the computational power of GPUs: Sh (Michael McCool, University of Waterloo), Brook (Pat Hanrahan,
Stanford University), CUDA (NVIDIA), CTM (AMD), and RapidMind. GPUs have already been used for many scientific appli-
cations but there is still a significant gap between the reality of large scale engineering codes (hundreds of thousands of lines,
days or weeks of computer time for a single simulation) and what has been accomplished using GPUs. Demonstrating a
. All rights reserved.
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complex engineering application remains largely to be seen. In this paper, we present a real engineering flow calculation
running on a single GPU with ‘‘engineering” accuracy and numerics. It demonstrates the potential of these processors for
high performance scientific computing.

2. Review of prior work on GPUs

The current state of the art in applying GPUs to computational fluid mechanics is either simulations for graphics purposes
emphasizing speed and appearance over accuracy, or simulations generally dealing with 2D geometries and using simpler
numerics not suited for complex engineering flows. We now review some previous effort in this direction. The most notable
work of engineering significance is the work of Brandvik [1] who solved an Euler flow in 3D geometry.

Krüger and Westermann [2] implemented basic linear operators (vector–vector arithmetic, matrix–vector multiplication
with full and sparse matrices) and measured a speed-up around 12–15 on ATI 9800 compared to Pentium 4 2.8 GHz. Applica-
tions to the conjugate gradient method and the Navier–Stokes equations in 2D are presented. Rumpf and Strzodka [3] applied
the conjugate gradient method and Jacobi iterations to solve non-linear diffusion problems for image processing operations.

Bolz et al. [4] implemented sparse matrix solvers on GPU using the conjugate gradient method and a multi-grid acceler-
ation. Their approach was tested on a 2D flow problem. A 2D unit square was chosen as test case. A speed-up by 2 was mea-
sured with a GeForce FX.

Goodnight et al. [5] implemented the multi-grid method on GPUs for three applications: simulation of heat transfer, mod-
eling of fluid mechanics, and tone mapping of high dynamic range images. For the fluid mechanics application, the vorticity–
stream function formulation was applied to solve for the vorticity field of a 2D airfoil. This was implemented on NVIDIA Ge-
ForceFX 5800 Ultra using Cg. A speed-up of 2.3 was measured compared to an AMD Athlon XP 1800.

In computer graphics where accuracy is not essential but speed is, flow simulations using the method of Stam [6] are very
popular. It is a semi-Lagrangian method and allows large time-steps to be applied in solving the Navier–Stokes equations
with excellent stability. Though the method is not accurate enough for engineering computation, it does capture the char-
acteristics of fluid motion with nice visual appearance. Harris et al. [7] performed a rather comprehensive simulation of
cloud visualization based on Stam’s method [6]. Partial differential equations describe fluid motion, thermodynamic pro-
cesses, buoyant forces, and water phase transitions. Liu et al. [8] performed various 3D flow calculations, e.g. flow over a city,
using Stam’s method [6]. Their goal is to have a real-time solver along with visualization running on the GPU. A Jacobi solver
is used with a fixed number of iterations in order to obtain a satisfactory visual effect.

The Lattice–Boltzmann model (LBM) is attractive for GPU processors since it is simple to implement on sequential and
parallel machines, requires a significant computational cost (therefore benefits from faster processors) and is capable of sim-
ulating flows around complex geometries. Li et al. [9,10] obtained a speed-up around 6 using Cg on an NVIDIA GeForce FX
5900 Ultra (vs. Pentium 4 2.53 GHz). See the work of Fan et al. [11] using a GPU cluster.

Scheidegger et al. [12] ported the simplified marker and cell (SMAC) method [13] for time-dependent incompressible
flows. SMAC is a technique used primarily to model free surface flows. Scheidegger performed several 2D flow calculations
and obtained speed-ups on NV 35 and NV 40 varying from 7 to 21. The error of the results was in the range 10�2–10�3. See
also the recent review by Owens et al. [14].

The work of Brandvik and Pullan [1] is the closest to our own. They implement a 2D and 3D compressible solver on the
GPU in both BrookGPU and Nvidia’s CUDA. They achieve speed-ups of 29 (2D) and 16 (3D), respectively, although the 3D
BrookGPU version achieved a speed-up of only 3. A finite volume discretization with vertex storage and a structured grid
of quadrilaterals was used. No multi-grid or multiple blocks were used.

3. Flow solver

The Navier–Stokes Stanford University Solver (NSSUS) solves the three-dimensional Unsteady Reynolds Averaged Navier–
Stokes (URANS) equations on multi-block meshes using a vertex-centered solution with first to sixth order finite difference
and artificial dissipation operators based on work by Mattson et al. [15], Svärd et al. [16], and Carpenter et al. [17] on Sum-
mation by Parts (SBP) operators. Boundary conditions are implemented using penalty terms based on the Simultaneous
Approximation Term (SAT) approach [17]. Geometric multi-grid with support for irregular coarsening of meshes is also
implemented. The prolongation and restriction operators are the standard full weighting except when irregular coarsening
is required and for certain cells the prolongation becomes an injection and restriction is, naturally, the transpose of the pro-
longation operator. The operators are applied to each block independently.

The SBT and SAT approaches allow for provably stable handling of the boundary conditions (both physical boundaries and
boundaries between blocks). The numerics of the code are investigated in the work of Nordstorm et al. [18].

In this work, we focus on a subset of the capabilities in NSSUS, namely the steady solution of the compressible Euler equa-
tions which come about if the viscous effects and heat transfer in the Navier–Stokes equations are neglected. Flows modeled
using the Euler equations are routinely used as part of the analysis and design of transonic and supersonic aircraft, missiles,
hypersonic vehicles, and launch vehicles. Current GPUs are well suited to solving the Euler equations since the use of double
precision, needed for the fine mesh spacing required to properly resolve the boundary layer in RANS simulations, is not
necessary.
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The non-dimensional Euler equations in conservation form are

oW
ot
þ oE

ox
þ oF

oy
þ oG

oz
¼ 0; ð1Þ
where W is the vector of conserved flow variables and E, F, and G are the Euler flux vectors defined as:
W ¼ ½q;qu;qv;qw;qe�;
E ¼ ½qu;qu2 þ p;quv;quw;quh�;
F ¼ ½qv;quv;qv2 þ p;qvw;qvh�;
G ¼ ½qw;quw;qvw;qw2 þ p;qwh�:
In these equations, q is the density, u, v, and w are the cartesian velocity components, p is the static pressure, and h is the
total enthalpy related to the total energy by h ¼ eþ p

q. For an ideal gas, the equation of state may be written as
p ¼ ðc� 1Þq e� 1
2
ðu2 þ v2 þw2Þ

� �
: ð2Þ
For the finite difference discretization a coordinate transformation from the physical coordinates (x,y,z) to the computational
coordinates (n,g,f) is performed to yield:
oW
ot
þ oE

on
þ oF

og
þ oG

of
¼ 0; ð3Þ
where W ¼W=J, J is the coordinate transformation Jacobian, and
E ¼ 1
J
ðnxEþ nyFþ nzGÞ; F ¼ 1

J
ðgxEþ gyFþ gzGÞ; G ¼ 1

J
ðfxEþ fyFþ fzGÞ:
Discretizing the spatial operators results in a system of ordinary differential equations
d
dt

Wijk

Jijk

 !
þ Rijk ¼ 0; ð4Þ
at every node in the mesh. An explicit five-stage Runge–Kutta scheme using modified coefficients for a maximum stability
region is used to advance the equations to a steady-state solution. The maximum stable timestep is computed based upon
the restriction of the fastest wave speed in the convection equations, i.e. the spectral radius.

Computing the residual R is the main computational cost; it includes the inviscid Euler fluxes, the artificial dissipation for
stability, and the penalty terms for the boundary conditions. The penalty states, obtained either from physical boundary con-
ditions or (for internal block boundaries) from the value of the flow solution in another block, are used to compute the pen-
alty terms.

In the next sections, we describe our implementation of NSSUS for GPUs. This work was accomplished using BrookGPU
which is a language that implements the streaming programming model on GPUs. We discuss the algorithms we created to
implement NSSUS on the GPU and report numerical results and performance measurements.

4. Brook

Brook (also known as BrookGPU) was designed by Ian Buck et al. [19–21]. Brook is a source to source compiler which
converts Brook code into C++ code and a high-level shader language like Cg or HLSL. This code then gets compiled into pixel
shader assembly by an appropriate shader compiler like Microsoft’s FXC or NVIDIA’s CGC. The graphics driver finally maps
the pixel shader assembly code into hardware instructions as appropriate to the architecture. It can run on top of either Di-
rectX or OpenGL; we used the DirectX backend for all results in this paper.

The syntax of Brook is quite simple. It is based on C with some extensions. The data is represented as streams which are
essentially arrays. These streams are operated on by kernels which have specific restrictions: each kernel is a short program
to be executed concurrently on each record of the output stream(s). This implies that each instance of a kernel automatically
has an output location associated with it. It is this location only to which output can be written. Scatter operations (writing
to arbitrary memory locations) are not allowed. Gather operations (read with indirect addressing) are possible for input
streams. Here is a trivial example:

kernel void add(float a[][], float b[][],out float resulthi) {
float2 my_index=indexof(result).xy;
result=a[my_index]+b[my_index];

}
float ah100i; float bh100i; float ch100i;
add(a,b,c);
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There will be one hundred of instances of the add kernel that are created, essentially implicitly executing a parallel for
loop over all the elements of the output steam c. The indexof operator can be used to get the location a particular instance of
the kernel will be writing to in the output stream(s).
5. Numerical accuracy considerations and performance comparisons between CPU and GPU

Producing identical results in a CPU and GPU implementation of an algorithm is, perhaps surprisingly, not a simple mat-
ter. Even if the exact same sequence of instructions are executed on each processor, it is quite possible for the results to be
different. Current GPUs do not support the entire IEEE-754 standard. Some of the deviations are not, in the author’s experi-
ence, generally a concern: not all rounding modes are supported; there is no support for denormalized numbers; and NaN
and floating point exceptions are not handled identically. However, other differences are more significant and will affect
most applications: division and square root are implemented in a non-standard-compliant fashion, and multiplication
and addition can be combined by the compiler into a single instruction (FMAD) which has no counterpart on current CPUs.

X=A�B+C; // FMAD
This instruction truncates the result of the intermediate multiplication leading to different behavior than if the operations
were performed sequentially [22].

There are other differences between the architectures that can cause even a sequence of additions and multiplications
(without FMADs) to yield different results. This is because the FPU registers are 80-bit on CPUs but only 32-bit on current
generation GPUs. If the following sequence of operations was performed:

C=1E5+1E-5; // C is in a register

D=10 � C; // C is still in a register, so is D

E=D - 1E6; // The result E is finally written to memory

On a GPU, E would be 0, while on a CPU it would contain the correct result of .0001. The result of the initial addition would
be truncated to 1E5 to fit in the 32-bit registers of a GPU unlike the CPU where the 80-bit registers can represent the result of
the addition.

Evaluation of transcendental functions are also likely to produce different results, especially for large values of the
operand.

To further complicate matters, CPUs have an additional SIMD unit that is separate from the traditional FPU. This unit has
its own 128-bit registers that are used to store either 4 single precision or 2 double precision numbers. This has implications
both for speed-up and accuracy comparisons. Each number is now stored in its own 32-bit quarter of the register. The above
operations would yield the same result on both platforms if the CPU was using the SIMD unit for the computation.

In addition, by utilizing the SIMD unit, the CPU performs these four operations simultaneously which leads to a significant
increase in performance. Unfortunately, the SIMD unit can only be directly used by programming in assembly language or
using ‘‘intrinsics” in a language such as C/C++. Intrinsics are essentially assembly language instructions, but allow the com-
piler to take care of instruction order optimization and register allocation. In most scientific applications writing at such a
low level is impractical and rarely done; instead compilers that ‘‘auto-vectorize” code have been developed. They attempt to
transform loops so that the above SIMD operations can be used.
6. Mapping the algorithms to the GPU

6.1. Classification of kernel types

In mapping the various algorithms to the GPU it is useful to classify kernels into four categories based on their memory
access patterns. All of the kernels that make up the entire PDE solver can be classified into one of these categories. Portions of
the computation that are often referred to as a unit, the artificial dissipation for example, are often composed of a sequence
of many different kernels. For each kernel type we give a simple example of sequential C code, followed by how that code
would be transformed into streaming BrookGPU code.

The categories are:
Pointwise. When all memory accesses, possibly from many different streams, are from the same location as the output

location of the fragment. A simple example of this type of kernel would be calculating momentum at all vertices by multi-
plying the density and velocity at each vertex. Kernels of this type often have much greater computational density than the
following three types of kernels:

for (int i=0; i < 100; ++i)

c[i]=a[i]+b[i];

would be transformed into the above add kernel.
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Stencil. Kernels of this type require data that is spatially local to the output location of the fragment. The data may or may
not be local in memory depending on how the 3D data is mapped to 2D space. Difference approximations and multi-grid
transfer operations lead to kernels of this type. These kernels often have a very low computational density, often performing
only one arithmetic operation per memory load.

for (int x=left; x < right; ++x)

for (int y=bottom; y < top; ++y)

res[x]=(func[x+1][y]+func[x-1][y]+func[x][y+1] +

func[x][y-1] - 4*func[x][y])/ delta;

would become

kernel void res(float delta, float func[][],out float reshi) {
float2 my_index=indexof(res).xy;
float2 up=my_index+float2(0, 1);
float2 down=my_index - float2(0, 1);

float2 right=my_index+float2(1, 0);
float2 left=my_index - float2(1, 0);

res=(func[up]+func[down]+func[right]+func[left] - 4*func[my_index])/delta;
}

Unstructured gather. While connectivity inside a block is structured, the blocks themselves are connected in an unstruc-
tured fashion. To access data from neighboring blocks, special data structures are created to be used by gather kernels which
consolidate non-local information. Copying the sub-faces of a block into their own sub-face stream is a special case of this
kind of kernel.

kernel void unstructGather(float2 pos[][], float data[], out float reshufflehi) {
float2 my_index=indexof(reshuffle);
float2 gatherPos=pos[ my_index ];

reshuffle=data[ gatherPos ];

}

The contents of the pos stream are indices that are used to access elements of the data stream.
Reduction. Reduction kernels are used to monitor the convergence of the solver. A reduction kernel outputs a single scalar

by performing a commutative operation on all the elements of the input stream. Examples include the sum, product or max-
imum of all elements in a stream. Reduction operations are implemented in Brook using efficient tree data structures and an
optimal number of passes [19].
6.2. Data layout

Because the entire iterative loop of the solver is performed on the GPU, we do not need to be constrained by the data
layout the CPU version of NSSUS uses. A one-time translation to and from the GPU format can be done at the beginning
and end of the complete solve with minimal overhead. This translation is on the order one second, whereas solves take min-
utes to tens of minutes.

To lay the 3D data out in the 2D texture memory, we used the standard ‘‘flat” 3D texture approach [23] where each 2D
plane making up the 3D data is stored at a different location in the 2D stream. This leads to some additional indexing to fig-
ure out a fragment’s 3D index from its location in the 2D stream (12 flops) and also additional work to convert back 3D indi-
ces (9 flops). Data for each block in the multi-block topology is stored in separate streams; the solver loops over the blocks
and processes each one sequentially.
6.3. Summary of GPU code

A summary of the code execution is shown in Fig. 1. The existing preprocessing subroutines implemented on the CPU are
unchanged. Additional GPU specific preprocessing code is run on the CPU to setup the communication patterns between
blocks, and the treatment of the penalty states and penalty terms. The transfer of data from the host to the GPU includes
the initial value of the solution, preprocessed quantities computed from the mesh coordinates, and weights and stencils used
in the multi-grid scheme. Once the data is on the GPU the solver runs in a closed loop. The only data communicated back to
the host are the L2 norms of the residuals which are used for monitoring the convergence of the code, and the current solu-
tion if the output to a restart file is requested. The number of lines for the GPU implementation is approximately: 4500 lines



Inviscid flux
Artificial dissipation
Multigrid forcing terms
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Copy sub-face data
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Penalty state for physical boundary conditions
Penalty terms

Preprocessing

Preprocessing for GPU

Transfer data to GPU

Run solver on GPU

Return data from GPU

Write output file

while iteration < iterationsMax and solution not converged:
   loop over steps of the multigrid cycle:

        if prolongation step:  transfer correction/solution to fine grid
        if restriction step:  transfer solution and residual to coarse grid
        if smoothing step:

compute residual
            compute time step
            store solution state
            update solution

compute residual
            loop over remaining Runge Kutta stages:
                update solution

compute residual
            update solution
    compute L2 norm of the residual

CPU GPU

Fig. 1. Flowchart of NSSUS running on the GPU.
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of Brook code, 8000 lines of supporting C++ code, and 1000 lines of new Fortran code. The original NSSUS code is in Fortran. It
took the authors approximately 4 months to develop the necessary algorithms and make the changes to original code.

6.4. Algorithms

Constraints from the geometry of the mesh may require that in some blocks, especially at coarse multi-grid levels, the
differencing in some directions is done at a lower order than otherwise desired if the number of points in that direction be-
comes too small. To accommodate this constraint imposed by realistic geometries and also to avoid writing 27 different ker-
nels for each possible combination of order and direction (up to third order is currently implemented on the GPU), we apply
all differencing stencils in each direction separately.

The numerics of the code are such that one-sided difference approximations are used near the boundaries of the domain.
We designate a boundary point as a point where a special stencil is needed, and interior point as a point where the normal
stencil is applied (see Fig. 2). To illustrate the unique stencils created by the SBP approach and to have a concrete example for
the following discussion we describe the fourth order stencil:
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This distinction presents a problem for parallel data processors such as GPUs because boundary points perform a different
calculation from interior points and furthermore different boundary points perform different calculations. This can lead to
Fig. 2. Node 0 is on the boundary. In a fourth-order scheme, nodes 0–3 would be considered boundary points.



Fig. 3. This figure illustrates the stencil in the x-direction and the branching on the GPU. Each colored square represents a mesh node. The color corresponds
to the stencil used for the node. Inner nodes (in grey) use the same stencil. For optimal efficiency, nodes inside a 4 � 4 square should branch coherently, i.e.
use the same stencil (see square with a dashed line border). For this calculation, this is not the case near the boundary which leads to inefficiencies in the
execution. The algorithm we propose reduces branching and leads to only one branch (instead of 3 here).
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terrible branch coherency problems, see Fig. 3. However, regardless of the order of the discretization, the branching can be
reduced to only checking if the fragment is a boundary point or not. While the calculation for each boundary point is differ-
ent, it can be computed as a dot product between stencil coefficients and field values. For example, the zeroth element of the
coefficient stream would consist of the values ð�24

17;
59
34;� 4

17;� 3
34Þ while another small position stream would hold the values

(0,1,2,3) describing the locations in u that correspond to the coefficients.
Thus by using two small 1D streams (that can be indexed using the boundary point’s own location), only one branch to

determine if the point is a boundary point or in the interior instead of three for each possible stencil is required. (Note: we
count an if. . .else. . . statement as one branch.) The exact number depends on the branch granularity of the hardware
which is theoretically 4 � 4 on the 8800. However, GPUbench [24] suggests that in practice 8 � 8 performs better than
4 � 4 and 16 � 16 even better than 8 � 8. For 16 � 16, the maximum possible number of branches is 15 but with this par-
ticular stencil there are only nine possibilities – one interior point plus four right boundary points and four left boundary
points (which can be adjacent due to the flat 3D layout). Our technique reduces this maximum to two, independent of
the stencil – one branch for interior points plus one branch for right and left boundary points. Higher order differencing
would benefit even more from this technique.

Dealing with the boundary conditions and penalty terms in an efficient manner is significantly more difficult than either
of the two previous cases. Fig. 4 shows how sub-faces and penalty terms are computed for each block. The unstructured con-
nectivity between blocks leads to several sub-faces on each block. Each node on the blue block must be penalized against the
corresponding node on the adjacent blocks. For example, the node on the blue block located at the intersection of all four
green blocks must be penalized against the corner node in each of the four green blocks.

In Brook, it is not possible to stream over a subset of the entries in an array. Instead, we must go through all the O(n3)
entries and use if statements to determine whether and what type of calculation need to be performed. This leads to a sig-
Fig. 4. The continuity of the solution across mesh blocks is enforced by computing penalty terms using the SAT approach [17]. The fact that the connectivity
between blocks is unstructured creates special difficulty. On this figure, for each node on the faces of the blue block, we must identify the face of one of the
green blocks from which the penalty terms are to be computed. In this case, the left face of the blue block intersects the faces of four distinct green blocks.
This leads to the creation of four sub-faces on the blue block. For each sub-face, penalty terms need to be computed. Note that some nodes may belong to
several sub-faces. (For the interpretation of color in this figure legend the reader is referred to the web version of this article.)
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nificant loss of performance since effectively only O(n2) entries (‘‘surface” entries) need to be operated on. This problem is
made worse by the fact that certain nodes belong to multiple faces thereby requiring multiple passes. In order to solve these
issues, we decided to copy the sub-face data into one smaller 2D stream (hereafter called sub-face stream); copy data from
other blocks if necessary for the internal penalty states (called the neighbor stream). These streams are then used to calculate
the penalty state for physical boundary conditions and the penalty terms. This step is computationally efficient since we pri-
marily only process nodes which need to be operated on. This is a strictly O(n2) step. Finally, we apply the result back into the
full 3D stream. This is shown in more details in Figs. 5 and 6.

The copying of the sub-face data into the sub-face stream is done by calculating and storing the location in the full 3D
stream from which each fragment in the sub-face stream will gather. The copying of the data from other blocks into the
neighbor stream is done by pre-computing and storing the block number and the location within that block from which each
fragment in the sub-face stream gathers. This kernel requires multiple blocks as input and must branch to gather from the
correct block. This is illustrated by the pseudo-code below, which can be implemented in Brook:

kernel void buildNeighborStream(float block1[][], float block2[][], . . .,

float3 donor_list<>, out float penalty_data<>) {
block=donor_list.x;
gather_coord=donor_list.yz;
if (block==1) penalty_data=block1[gather_coord];
else if (block==2) penalty_data=block2[gather_coord];
. . .

}

Fig. 5. To calculate the penalty terms efficiently for each sub-face, we first copy data from the 3D block into a smaller sub-face stream (shown on the right).
In this figure, the block has 10 sub-faces. Assume that the largest sub-face can be stored in memory as a 2D rectangle of size nx � ny. In the case shown, the
sub-face stream is then composed of 12 nx � ny rectangles, two of which are unused. Some of the space is occupied by real data (in blue); the rest is unused
(shown in grey). (For the interpretation of color in this figure legend the reader is referred to the web version of this article.)

Fig. 6. This figure shows the mapping from neighboring blocks to the neighbor stream used to process the penalty terms for the blue block. There are four
large blocks surrounding the blue block (top and bottom not shown). They lead to the first four green rectangles. The other rectangles are formed by the two
blocks in the front right and the four smaller blocks in the front left. (For the interpretation of color in this figure legend the reader is referred to the web
version of this article.)
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An important point to make is that this method automatically handles the case of intersecting sub-faces (such as at edges
and corners) where multiple boundary conditions and penalty terms need to be applied. In that respect, this approach leads
to a significantly simpler code.

7. Results

The performance scaling of the code with block size is examined followed by an investigation of the performance of each
of the three main kinds of kernels. We, then, examine the performance on meshes for complex geometries typical of realistic
engineering problems. In all our tests, the CPU used was a single core of an Intel Core 2 Duo E6600 (2.4 GHz, 4 MB L2 cache)
and the GPU used was an NVIDIA 8800GTX (128 scalar processor cores at 1.35 GHz).

For all the results given below, we observed a consistent accuracy compared to the original single precision code in the
range of 5–6 significant digits, including the converged solution for the hypersonic vehicle. This is the accuracy to be ex-
pected since the GPU operates in single precision. We note that this good behavior is partly a result of considering the Euler
equation. The Navier–Stokes equations for example often require a very fine mesh near the boundary to resolve the bound-
ary layer. In that case, differences in mesh element sizes may result in loss of accuracy.

7.1. Performance scaling with block size

Fig. 7 shows the scaling of performance and speed-up with respect to the block size. These tests were run on single block
cube geometries with freestream boundary conditions on all faces. As the data set becomes larger than the L2 cache, the CPU
slows down by a factor of about 2. On the other hand, when the data set increases, the GPU becomes much more efficient,
improving by about a factor of 100. The GPU does not reach its peak efficiency until it is working on streams with at least
32,000 elements.

The multi-grid cycle used in these and following tests was a 2 level V cycle. In principle, multi-grid should be used with
more than 2 levels but for the compressible Euler equations, the presence of shocks limits the number of grids which can be
efficiently used to two. Since our goal is to model a hypersonic vehicle in which shocks are present, we used 2 grids through-
out this work even in cases where there is no shock. In 3D, 2 levels require computing on a grid approximately 8� smaller
than the original and we know from the single grid results that small grids will be slower than larger ones; consequently, we
expect the multi-grid solver to be somewhat slower than the single grid. This is indeed the case. For 512 vertices, multi-grid
is about twice as slow. For larger grids, the performance of multi-grid generally follows that of the single grid results but are
slightly slower.

7.2. Performance of the three main kernel types

The three main different types of kernels have different performance characteristics which will be examined here. For
pointwise kernels, we consider the inviscid flux kernel; stencil kernels will be represented by the residual calculation (dif-
ferencing of the fluxes), and kernels with unstructured gathers by the boundary and penalty terms calculation. We do not
examine reduction kernels since they have been studied elsewhere [19] and these kernels are less than 1% of the total
runtime.
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Fig. 7. Performance scaling with block size, first order.
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Fig. 8 shows that the inviscid flux kernel scales similarly to the overall program (Fig. 7) although with a more marked
increase at the largest size. This kernel has an approximately 1:1 ratio of flops to bytes loaded which suggests that it is still
limited by the maximum memory bandwidth of the card. Indeed, the largest mesh achieved a bandwidth of 78 Gbytes/s
which is nearly the theoretical peak of the card. The achievable memory bandwidth depends not only on the size of the data
stream, but also its shape. The second largest mesh has an x-dimension that is divisible by 16, whereas the largest mesh has
an x-dimension divisible by 128. This is the likely reason for the variations between these two stream sizes.

The second type of kernel, the stencil computation, also follows the same basic scaling pattern as the timings in Fig. 7
(Fig. 8). This particular kernel loads 5 bytes for every one (useful) flop it performs. This very poor ratio is due to loading
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Fig. 8. (Left) Pointwise performance (inviscid flux calculation); (right) stencil performance (third-order residual calculation).

104 105 106
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Vertices

M
ic

ro
se

co
nd

s 
pe

r v
er

te
x

CPU
GPU

104 105 106
1

2

3

4

5

6

7

8

Number of Vertices

Sp
ee

du
p

Fig. 9. Unstructured gather performance (boundary conditions and penalty terms calculation). The decrease in speed-up is due to an unavoidable O(n3) vs.
O(n2) algorithmic difference in one of the kernels that make up the boundary calculations. See the discussion in the text.





E. Elsen et al. / Journal of Computational Physics 227 (2008) 10148–10161 10159
their location slows the overall computation down. In practice, however, it is unlikely that the size of a given block will be
larger than 2 million elements; so in most practical situations, we are in the region where the GPU speed-up is large.

7.3. Performance on real meshes

The NACA 0012 airfoil (from the National Advisory Committee for Aeronautics) is a symmetric, 12% thick airfoil, that is a
standard test case geometry for computational fluid dynamics codes. Fig. 10 shows the mesh with three blocks used for this
simulation (C-mesh topology) and Fig. 11 shows the Mach number around the airfoil.

The CPU code was compiled with the following options using the Intel Fortran compiler version 10: -O2 -tpp7 -axWP -
ipo.

Table 1 shows the speed-ups for the NACA 0012 airfoil test case. As expected the speed-ups with multi-grid is lower than
with a single grid because the computations on the coarser grids are not as efficient. However, over an order of magnitude
reduction in computation time is still achieved.

For our final calculations, we used the hypersonic vehicle configuration from Marta and Alonso [25]. This is representative
of a typical mesh used in the external aerodynamic analysis of aerospace vehicles. It is a 15-block mesh; two versions were
used with approximately 720,000 and 1.5 million nodes. Because the blocks are processed sequentially on the GPU, an
important consideration is not only the overall mesh size but the sizes of individual blocks. For the 1.5 million node mesh,
the approximate average block size is 100,000 nodes, with a minimum of 10,000 and a maximum of 200,000 nodes. Fig. 12
shows the Mach number on the surface of the vehicle and the symmetry plane for a Mach 5 freestream.

In Table 2, we see the same general trend for speed-ups as the problem size and multi-grid cycle are varied. Beyond just
the pure speed-up, it is also important to note the practical impact of the shortened computational time. For example, a con-
verged solution for the 1.5 M node mesh using a 2-grid multi-grid cycle requires approximately 4 CPU hours, but only about
15 min on one GPU!
Table 1
Measured speed-ups for the NACA 0012 airfoil computation

Order Multi-grid cycle Speed-up

First order Single grid 17.6
Third order Single grid 15.1
First order 2 Grids 15.6
Third order 2 Grids 14.0

Note that higher orders and multiple grids generally lead to faster convergence, so that even though the speed-up is slightly reduced, the wall clock time to
reach convergence would also be reduced (for both the CPU and GPU).

Fig. 12. Mach number – side and back views of the hypersonic vehicle.



8. Conclusion

We have implemented what we believe to be the most complex scientific simulation yet done on GPUs. Measured speed-
ups range from 15� to over 40�. To demonstrate the capabilities of the code we simulated a hypersonic vehicle in cruise at
Mach 5 – something out of the reach of most previous fluid simulation works on GPUs. The three main types of kernels nec-
essary for solving PDEs were presented and their performance characteristics analyzed. Suggestions to reduce branch inco-
herency due to stencils that vary at the boundaries were made. We have also created a novel technique to handle the
complications created by the boundary conditions and the unstructured multi-block nature of the mesh.

Our analysis has identified further ways in which the performance can be improved. Performance on small blocks is
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